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ABSTRACT
Taxonomies, especially the ones in specific domains, are becoming
indispensable to a growing number of applications. State-of-the-art
approaches assume there exists a text corpus to accurately charac-
terize the domain of interest, and that a taxonomy can be derived
from the text corpus using information extraction techniques. In
reality, neither assumption is valid, especially for highly focused
or fast-changing domains. In this paper, we study a challenging
problem: Deriving a taxonomy from a set of keyword phrases. A
solution can benefit many real life applications because i) keywords
give users the flexibility and ease to characterize a specific domain;
and ii) in many applications, such as online advertisements, the do-
main of interest is already represented by a set of keywords. How-
ever, it is impossible to create a taxonomy out of a keyword set it-
self. We argue that additional knowledge and contexts are needed.
To this end, we first use a general purpose knowledgebase and key-
word search to supply the required knowledge and context. Then
we develop a Bayesian approach to build a hierarchical taxonomy
for a given set of keywords. We reduce the complexity of previous
hierarchical clustering approaches from O(n2 log n) to O(n log n),
so that we can derive a domain specific taxonomy from one mil-
lion keyword phrases in less than an hour. Finally, we conduct
comprehensive large scale experiments to show the effectiveness
and efficiency of our approach. A real life example of building an
insurance-related query taxonomy illustrates the usefulness of our
approach for specific domains.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; G.3 [Probability and Statistics]:
Nonparametric statistics; H.2.8 [Database Management]: Database appli-
cations—Data mining

General Terms
Algorithms; Experimentation
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1. INTRODUCTION
Taxonomy plays an important role in many applications. For ex-

ample, in web search, organizing domain-specific queries into a hi-
erarchy can help better understand the queries and improve search
results [23] or help with query refinement [17]. In online adver-
tising, taxonomies about specific domains (e.g., insurance, which
is the most profitable domain in online ads) are used to decide the
relatedness between a given query and bidding keywords.

Recently, much work has been devoted to taxonomy induction,
particularly with respect to automatically creating a domain-specific
ontology or taxonomy [14, 15, 16]. The value of automatic taxon-
omy constructing is obvious: Manual taxonomy construction is a
laborious process, and the resulting taxonomy is often highly sub-
jective, compared with taxonomies built by data-driven approaches.
Furthermore, automatic approaches have the potential to enable hu-
mans or even machines to understand a highly focused and poten-
tially fast changing domain.

Most state-of-the-art approaches for domain-specific taxonomy
induction work as follows: First, it selects a text corpus as its in-
put. The assumption is that the text corpus accurately represents
the domain. Second, it uses some information extraction methods
to extract ontological relationships from the text corpus, and uses
the relationships to build a taxonomy. For instance, to derive a
medical or biological taxonomy, a commonly used corpus is the
entire body of biomedical literature from MEDLINE, life science
journals, and online books (e.g., those on PubMed).

Although these text-corpus based approaches have achieved some
success, they have several disadvantages. For example, for a highly
focused domain, it is very difficult to find a text corpus that accu-
rately characterizes that domain. Intuitively, it is easier to find a
text corpus (e.g., the entire set of ACM publications) for big topics
such as “computer science,” but it is much more difficult to find
one for a specific topic such as “big data for business intelligence,”
as articles about such topics are likely to be dispersed in many dif-
ferent fields and forums. Furthermore, we are often interested in
new domains or fast changing domains, which makes it even more
difficult to find a characterizing text corpus.

Furthermore, even if we can find a corpus that accurately char-
acterizes the domain, we may still have a problem of data sparsity.
Intuitively, the more highly focused the domain, the smaller the
text corpus that is available for that domain. The problem is exac-
erbated by our limited power in understanding natural language text
for identifying ontological relationships. To build a taxonomy from
a text corpus, we usually bootstrap from a limited set of heuristic
patterns. However, high quality patterns typically have very low
recalls. For instance, it is well known that Hearst patterns [8] (i.e.,
“such as” patterns) have a high level of accuracy, but it is unrealistic
to assume that the text corpus expresses every ontological relation-



ship in “such as” or its derived patterns, especially when the text
corpus is not large enough.

Instead of building taxonomies from a text corpus, we can also
consider extracting a domain-specific taxonomy from a big, gen-
eral purpose taxonomy such as the Open Directory Project (ODP)1

or Wikipedia2. However, a general purpose knowledgebase usually
has low coverage on a highly focused domain, and it may also pro-
duce ambiguous interpretations for highly specialized terms in the
domain.

In this paper, we consider the challenge of inducing a taxonomy
from a set of keyword phrases instead of from a text corpus. The
problem is important because a set of keywords gives us the flex-
ibility and ease to accurately characterize a domain, even if the
domain is fast changing. Furthermore, in many cases, such a set
of keywords is often readily available. For instance, search engine
companies are interested in creating taxonomies for specific adver-
tising domains. Each domain is described by a set of related ad
keywords (bid phrases).

The problem of inducing a taxonomy from a set of keywords has
one major challenge. Although by using a set of keywords we can
more accurately characterize a highly focused, even fast-changing
domain, the set of keywords itself does not contain explicit rela-
tionships from which a taxonomy can be constructed. One way to
overcome this problem is to enrich the set of keyword phrases by
aggregating the search results for each keyword phrase (i.e., throw-
ing each keyword phrase into a search engine, and collecting its
top k search result) into a text corpus. Then it treats the text cor-
pus as a bag of words and constructs a taxonomy directly out of
the bag of words using some hierarchical clustering approach [5,
18]. The problem with this approach is that the corpus represents
the context of the keyword phrases, rather than the conceptual re-
lationships that exist among the keyword phrases. For instance, the
search results for the query “auto insurance” contain a very limited
number of articles on how “auto insurance” is defined or charac-
terized. The majority of articles either introduce a certain type of
car insurance or talk about car insurance in passing. From such ar-
ticles, we can extract context words such as “Florida,” “Fords,” or
“accident.” The resulting context can be arbitrary and not insurance
related.

To tackle this challenge, we propose a novel, “knowledge+context”
approach for taxonomy induction. We argue that, in order to cre-
ate a taxonomy out of a set of keywords, we need knowledge and
contexts beyond the set of keywords itself. For example, given two
phrases “vehicle insurance” and “car insurance,” humans know im-
mediately that “car insurance” is a sub-concept of “vehicle insur-
ance,” because humans have the knowledge that a car is a vehicle.
Without this knowledge, the machine can hardly derive this rela-
tionship unless the extended corpus from the keywords (e.g., using
keyword search) happens to describe this relationship in a syntac-
tic pattern that the machine can recognize (e.g., “vehicles such as
cars”). But the context is also important. It is unlikely that the
knowledgebase (especially a general purpose one) knows about ev-
ery subsuming relationship in the specific domain. For example, it
has no idea that x is a sub-concept of y. However, through the con-
text, we may find that x is highly related to z, and in the knowledge-
base z is a sub-concept of y. Thus, using knowledge and contexts,
we can establish the relationship between x and y.

Incorporating both knowledge and contexts in taxonomy build-
ing is not easy. To this end, we formalize our approach as hier-
archical clustering over features generated from a general knowl-

1http://www.dmoz.org/
2http://www.wikipedia.org/

edgebase and search context. More specifically, we first deduce a
set of concepts for each keyword phrase using a general purpose
knowledgebase [19] and then obtain its context information from
a search engine. After enriching the keyword set using knowledge
and contexts, we make use of Bayesian-based hierarchical cluster-
ing to automatically induce a new taxonomy. Our paper presents
three technical contributions: First, we illustrate how to derive the
concepts and context from each keyword. Second, we present the
way to formulate the taxonomy building to a hierarchical clustering
problem based on their concepts and context. And finally, we scale
up the method to millions of keywords.

The rest of the paper is organized as follows. In Section 2, we
introduce the background of hierarchical clustering and Bayesian
rose trees. We then present algorithms, analyze their complexity,
and discuss some implementation issues in Section 3. Section 4
describes experiments that demonstrate the effectiveness and effi-
ciency of our approach. In Section 5, we conclude our work and
present several future works.

2. MULTI-BRANCH CLUSTERING
Hierarchical clustering is a widely used clustering method [9].

The advantage of hierarchical clustering is that it generates a tree
structure (a dendrogram) which is easy to interpret. Two strate-
gies are used for hierarchical clustering, agglomerative and divi-
sive, where the agglomerative approach builds a tree from bottom
up by combining the two most similar clusters at each step, and
the divisive approach builds a tree from top down by splitting the
current cluster into two clusters at each step.

Traditional hierarchical clustering algorithms construct binary
trees. However, binary branches may not be the best model to de-
scribe a set of data’s intrinsic structure in many applications. Fig. 1
gives an example. The goal here is to create a taxonomy from a set
of insurance-related keyword phrases. It assumes we have a good
similarity measure that enables us to group related keywords in an
optimal way. Still, the outcome might be sub-optimal or unnatu-
ral. In the figure, “indiana cheap car insurance,” “kentucky cheap
car insurance,” and “missouri cheap car insurance” are on different
levels, but apparently they belong to the same cluster. This dis-
advantage is introduced by the model not the similarity measure,
which means that no matter how accurately we understand the data,
the result will still be sub-optimal.

Figure 1: Example of a binary-branch taxonomy.

To remedy this, multi-branch trees are developed. Compared
with binary trees, they have a simpler structure and better inter-
pretability. An example of multi-branch clustering is shown in



Fig. 2, where nodes such as “indiana cheap car insurance,” “ken-
tucky cheap car insurance,” and “missouri cheap car insurance” are
grouped under the same parent node.

Currently, there are several multi-branch hierarchy clustering ap-
proaches [1, 3, 10]. The methods proposed by Adams et al [1]
and Knowles et al [10] are based on the Dirichlet diffusion tree,
which use an MCMC process to infer the model. Blundel et al [3]
adopts a simple, deterministic, agglomerative approach called BRT
(Bayesian Rose Tree). In this work, we adopt BRT as a basic algo-
rithm for taxonomy induction. The major steps of BRT are shown
in Algorithm 1.

Algorithm 1 is a greedy agglomerative approach. In the begin-
ning, each data point is regarded as a tree on its own: Ti = {xi}

where xi is the feature vector of ith data. For each step, the algo-
rithm selects two trees Ti and T j and merges them into a new tree
Tm. Unlike binary hierarchical clustering, BRT uses three possible
merging operations [3]:

• Join: Tm = {Ti,T j}, that is, Tm has two child nodes.

• Absorb: Tm = {children(Ti) ∪ T j}, that is, Tm has |Ti| + 1
child nodes.

• Collapse: Tm = {children(Ti) ∪ children(T j)}, that is, Tm has
|Ti| + |T j| child nodes.

Specifically, in each step, Algorithm 1 greedily finds two trees
Ti and T j to maximize the ratio of probability:

p(Dm|Tm)
p(Di|Ti)p(D j|T j)

(1)

where p(Dm|Tm) is the likelihood of data Dm given the tree Tm,
Dm is all the leaf data of Tm, and Dm = Di ∪ D j. The probability
p(Dm|Tm) is recursively defined on the children of Tm:

p(Dm|Tm) = πTm f (Dm) + (1 − πTm )
∏

Ti∈Children(Tm)

p(Di|Ti) (2)

where f (Dm) is the marginal probability of the data Dm and πTm

is the “mixing proportion.” Intuitively, πTm is the prior probability
that all the data in Tm is kept in one cluster instead of partitioned
into sub-trees. In BRT [3], πTm is defined as:

πTm = 1 − (1 − γ)nTm−1 (3)

where nTm is the number of children of Tm, and 0 ≤ γ ≤ 1 is the
hyperparameter to control the model. A larger γ leads to coarser
partitions and a smaller γ leads to finer partitions.

The major cost of this bottom-up hierarchy construction approach
is dominated by the following two steps:

(1) looking for pairs of clusters to merge;

(2) calculating the likelihood associated with the merged cluster
(Eq. (1)).

Assume in the current round there are c clusters. The two steps
above take O(c2) time. At the start of the algorithm, we have c = n,
the number of data points. For all the clusters merging into one
cluster, if we first compute the likelihood by Eq. (1), and sort them
before we search for merging pairs, it will take O(n2 ·CV + n2 log n)
time complexity, where CV is the maximum number of non-zero
elements in all the initial vectors xi’s. For high-dimensional text
data, the document will have hundreds of words on average. There-
fore, CV cannot be ignored when we analyze the overall complexity
compared to log n. This is not applicable for any large-scale data
set. Moreover, this approach will have O(n2) memory cost. For

Algorithm 1 Bayesian Rose Tree (BRT).
Input: A set of documentsD.
Ti ← xi for i = 1, 2, · · · , n
c← n
while c > 1 do

1. Select Ti and T j and merge them into Tm which maximizes

L(Tm) =
p(Dm |Tm)

p(Di |Ti)p(D j |T j)
, (4)

where the merge operation is join, absorb, or collapse.
2. Replace Ti and T j with Tm in the tree.
3. c← c − 1

end while

100, 000 data points, this will take 3×8×1010 = 240G bytes mem-
ory to contain all the pairs’ likelihood, if we use 8 bytes to store
double-precision value and have three types of merging likelihoods
(“join,” “absorb,” and “collapse”).

3. KEYWORD TAXONOMY BUILDING
In this section, we introduce our approach for building a domain

specific taxonomy from a set of keyword phrases augmented with
knowledge and contexts. First, we obtain knowledge and contexts
related to the keywords. In our approach, we obtain knowledge
(concepts that correspond to each keyword phrase) using a tech-
nique called short text conceptualization [19] and a general purpose
knowledgebase called Probase [11, 24], and we obtain contexts by
submitting the queries to a commercial search engine to retrieve
all snippet words. Second, we build the taxonomy using a mul-
tiple branch hierarchical clustering approach. In this section, we
initially introduce how to leverage concepts and contexts, and then
we present the methods that speed up the taxonomy building for a
large set of keywords.

3.1 Knowledge and Context
We use information obtained from a general-purpose knowledge-

base and a search engine to augment the given set of keyword
phrases.

The knowledgebase we use is Probase [11, 24], which has been
demonstrated useful for Web search [21, 22]. The core of Probase
consists of a large set of isa relationships, which are extracted from
a text corpus of 1.68 billion web pages. For example, “... Spanish
artists such as Pablo Picasso ...” is considered a piece of evidence
for the claim that “Pablo Picasso” is an instance of the concept
Spanish artist. Probase also contains other information. For ex-
ample, for each concept, it contains a set of attributes that describe
the concept. One unique feature of Probase is the broadness of its
coverage. Probase contains millions of concepts, from well-known
ones such as “country” and “artists” to small but concrete ones such
as “wedding dress designers” and “renewable energy techniques.”
The richness of Probase enables us to identify and understand mil-
lions of concepts people use in their daily communication.

The knowledgebase facilitates us in deriving concepts from key-
word phrases and we can then use the concepts to enrich the key-
word phrase. For instance, given “microsoft and apple,” we derive
concepts such as IT companies, big companies, etc., and given “ap-
ple and pear,” we derive concepts such as fruit or tree. However,
these are still not enough for understanding the keyword phrase.
We need to enhance the knowledgebase in two aspects.

• In order to model text for inferencing, we need to make the
knowledge in Probase probabilistic. To this end, we intro-
duce a set of probabilistic measures. For example, P(instance



Figure 2: Example of Multi-branch Query Taxonomy.

|concept) tells us how typical the instance in the given con-
cept is. Intuitively, knowing that both “robin” and “penguin”
are birds is not enough. We need to know “robin” is a much
more typical bird than “penguin,” that is, when people talk
about birds, it is more likely that they are thinking about a
robin than a penguin. Such information is essential for un-
derstanding the intent behind a piece of short text. Besides
P(instance|concept) we also obtain P(concept|instance),
P(concept|attribute), and P(attribute|concept). These val-
ues are calculated during the information extraction process,
for example:

P(instance|concept) =
n(instance, concept)

n(concept)
(5)

where n(instance, concept) denotes the number of times that
theinstance and concept co-occur in the same sentence in a
given corpus, and n(concept) is the frequency of the concept.

• A keyword phrase may be syntactically and semantically com-
plicated and require sophisticated chunking and parsing to
identify meaningful terms. As shown in Fig. 3, we concep-
tualize “indiana cheap car insurance” by first recognizing the
terms “indiana,” “cheap car,” and “car insurance” that ap-
pear in Probase, and then we derive concepts such as state,
car insurance, bill, etc. Furthermore, each concept is asso-
ciated with a probability score that indicates the strength of
the concept. A detailed description of the conceptualization
techniques can be found in [19].

Although Probase contains millions of concepts, we cannot ex-
pect it to cover everything. To remedy this, we collect the “con-
text” of a keyword phrase, and use the context to supplement the

Figure 3: Conceptualization of “indiana cheap car insurance”.

concepts related to the phrase. To obtain the context, we submit the
keyword phrase to a search engine, and collect the top ten snippets
in the search results. The context is represented as a bag of words.
The quality of the context is much lower than that of the concepts
obtained from Probase, in the sense that for a given word in the bag-
of-words context, we do not know its semantic relationship with the
keyword. But still, they can be useful especially when the concepts
we obtained are insufficient. As an example, consider two key-
word phrases, “www.monster.com” and “monster.com.” Probase
knows that “monster.com” is a job site, but it knows nothing about
“www.monster.com.” Thus, conceptualization will report that the
two phrases have zero similarity. Through the search engine, we
find that “www.monster.com” is associated with phrases such as
web site, online job site, job board, etc. Thus, by adding the context
information, the query containing “www.monster.com” will have
greater similarity to the query containing “monster.com.”



3.2 Text Modeling
To cluster the data into a hierarchy, we first need to model the

data. This corresponds to calculating f (D) in Eq.(2), the marginal
distribution of data D (Section 2). The original BRT approach [3]
assumes that the data can be modeled by a set of binary features
that follow the Bernoulli distribution. In other words, features are
not weighted. In our approach, we use features that consist of con-
cepts and contexts to represent the data. Since even a short piece
of text may contain multiple topics or concepts, it is important to
rank them by their significance. Thus, unlike BRT, we incorporate
weights into the marginal distribution f (D).

Given a set of keyword phrases {keyword1, · · · , keywordn}, we
derive a list of (term,weight) pairs for each keyword, where the
term is either a concept produced by the knowledgebase, or a con-
text word generated by search, and the weight is derived as follows:

weight j = λ · f req(term j) + (1 − λ) ·
n∑
i

Ci · P(term j|keywordi)

where λ is a parameter that controls how much we value the con-
text compared to concepts; f req(term j) is the frequency of a term
j in the context derived from search results; P(term j|keywordi)
is the probability of the term as a concept given keyword phrase
keywordi, and is provided by the knowledgebase (as in Eq (5));
Ci is the frequency of keywordi in the knowledgebase, and Ci ·

P(term j|keywordi) is used as the frequency of the term as a con-
cept. We then set the feature vector xi with the term frequencies
weight j’s for keywordi.

In the hierarchical clustering algorithm, once two keywords or
keyword clusters are grouped together, the grouped keyword clus-
ter can contain multiple topics. For example, initially we have four
keywords “China,” “India,” “Germany,” and “France.” Although
these four keywords share some common concepts such as coun-
try and nation, we can still distinguish them based on the concepts
with smaller weights. First, “China” and “India” will be grouped
together since they share many concepts like Asian country and
emerging market. “Germany” and “France” will also be grouped
together because they share concepts like European country and
Western nation. After that, these two clusters will be grouped to-
gether. The final cluster actually contains multiple topics, i.e. both
Asian country and European country. Therefore, we need a distri-
bution to better capture this characteristic.

To this end, we use the DCM distribution [13] to represent the
marginal distribution f (D). DCM is derived based on multino-
mial and Dirichlet conjugate distributions. Multinomial distribu-
tion can naturally characterize the co-occurrence counts of terms,
while the prior distribution, i.e., Dirichlet distribution, can be re-
garded as smoothing over counts. The generative process of a docu-
ment underlying this modeling is that we first sample a multinomial
distribution from Dirichlet distribution, and then sample a docu-
ment based on the multinomial distribution. Multinomial distribu-
tion can be regarded as a document-specific sub-topic distribution,
which makes certain words appear more likely in a particular docu-
ment [13]. DCM integrates out the intermediate multinomial distri-
bution, and thus it represents either more general topics or multiple
topics. In hierarchical clustering, we incrementally merge clusters.
Therefore, DCM is more appropriate for evaluating whether two
clusters (with multiple topics) should be merged.

Specifically, the likelihood of multinomial distribution p(x|θ) is
defined by:

p(x|θ) =
m!∏V
j x( j)!

V∏
j=1

p(x( j)|θ) =
m!∏V
j x( j)!

V∏
j=1

[θ( j)]x( j)
, (6)

Algorithm 2 Nearest-neighbor-based BRT.
Input: A set of documentsD.
Initialization 1: Set Ti = xi for i = 1, 2, · · · , n; number of clusters c = n.
Initialization 2: Find the nearest neighbors N(Ti) for each cluster, and
compute all the likelihood scores.
while c > 1 do

1. Find Ti and T j in all neighborhood sets {Nk(Ti)}, whose merge
maximizes Eq. (1), where m ∈ {join, absorb, collapse}.
2. Tm ← the result of merge on Ti and T j
3. Delete Ti and T j.
4. Find the nearest neighbors set N(Tm) for the new cluster.
5. c← c − 1

end while

where V is the vocabulary size, x( j) is the frequency of term v( j),
m =

∑V
j x( j), and θ = (θ(1), θ(2), . . . , θ(V))T ∈ RV are the parameters

of multinomial distribution.
The Dirichlet distribution prior is:

p(θ|α) =
Γ(
∑V

j=1 α
( j))∏V

j=1 Γ(α( j))

V∏
j=1

[θ( j)]α
( j)−1

=
1

∆(α)

V∏
j=1

[θ( j)]α
( j)−1

, (7)

where α = (α(1), α(2), . . . , α(V))T ∈ RV , and the Gamma function3

has the property Γ(x + 1) = xΓ(x). The “Dirichlet delta function”

∆(α) =

∏V
j=1 Γ(α( j))

Γ(
∑V

j=1 α
( j))

is introduced for convenience.

Then the marginal distribution f (D) is given by:

fDCM(D) =

∫
θ

n∏
i

p(xi|θ)p(θ|α)dθ =

n∏
i

m!∏V
j x( j)

i !
·

∆(α +
∑

i xi)
∆(α)

.

(8)
Using this marginal distribution fDCM(D), we can seamlessly inte-
grate the weights into the term feature vector. Next we will intro-
duce how to construct the tree more efficiently.

3.3 Efficient Taxonomy Construction
As we show in Section 2, BRT has time complexity O(n2 · CV +

n2 log n), and space complexity O(n2), which is not applicable to
large-scale problems. The most time consuming process in ag-
glomerative clustering lies in searching all candidate cluster pairs
to find the best pairs to merge. If we can reduce the search space
for BRT by pruning the pairs of keyword clusters that are most
unlikely to be merged, then we can reduce the cost of searching
agglomerative clustering. We propose to “cache” a set of nearest
neighbors for each data point. Then the search complexity only
depends on the number of the nearest neighbors. However, search-
ing for nearest neighbors still incurs a cost of O(n) for each data
point. The time complexity of finding k nearest neighbors can be
reduced to O(log n) using techniques such as KD-trees [2] and Met-
ric trees [20]. However, these techniques are not suitable for high-
dimensional data, since they partition the data space dimension
by dimension. Approximation methods such as LSH (Locality-
Sensitive Hashing) [7] can be used when the number of dimensions
is large. Particularly, Spilltree [12] relaxes the non-overlapping
constraints of Metric trees and incorporates the technique used in
LSH, and thus combines the benefits of both methods.

In this section, we focus on adapting two major types of near-
est neighbor approaches for efficient taxonomy construction: k-
nearest-neighbor (kNN) and ε-ball-nearest-neighbor (εNN) [4]. kNN
finds k nearest neighbors for each data and is not concerned the
density of the data. εNN uses a spherical ball to bind all the nearest

3For integer variables, Gamma function is Γ(x) = (x− 1)!. For real
numbers, it is Γ(x) =

∫ ∞
0

tx−1e−tdt.



neighbors within the ball. In our taxonomy construction approach,
we significantly reduce the time complexity by using methods such
as Spilltree [12] and PPJoin+ [25].

3.3.1 kNN-Approximation
We introduce two kNN-based approximation approaches based

on BRT. A flowchart for using the nearest neighbors to approximate
the construction procedure of BRT is shown in Algorithm 2.

kNN-BRT: Using the kNN approach, we first find the k nearest
neighbors for each data point, and then we check the possibility
of merging within the neighborhood set. We denote Nk(x) as the
k nearest neighbor set of data x. To find k nearest neighbors of
a data, we keep a minheap with size k to maintain the data with
largest similarities scores. When new data comes and the similarity
score is larger than the top value (the smallest one in the minheap),
we replace the top index with the new data. Compared to BRT, the
space cost is significantly reduced from O(n2) to O(nk). The time
complexity is also reduced to O(n2 ·CV + n2 log k).

Spilltree-BRT: Using the k nearest neighbors to construct BRT
is still time consuming. We then use the Spilltree algorithm [12] to
further reduce the time complexity.

Spilltree is a generalization of metric trees [20]. Metric trees
partition the data space into binary trees, and retrieve the nearest
neighbors by DFS (depth first search). Metric trees will be less ef-
ficient when the number of dimensionality is large (e.g., larger than
30 [12]). The Spilltree algorithm offers two major modifications:

1. Introduce random projection before partitioning the data space.

2. Introduce the overlapping/non-overlapping regions between
nodes when partitioning each sub-tree. While searching for
the nearest neighbors in the sub-trees with overlapping parti-
tions, Spilltree searches one branch only.

According to the Johnson-Lindenstrauss Lemma [6], embedding
a data set of dimension n to an O(log n) dimensional space has little
distortions for pairwise distances. As a result, brute-force search in
the projected space provides a (1+ε)-NN [12] in the original space.
Thus, by projecting the data onto a much lower dimensional space,
high precision can be guaranteed while the time cost is significantly
reduced, especially when the original data has millions of dimen-
sions.

Moreover, original metric trees perform a DFS to find the nearest
neighbors. By introducing the overlapping nodes, Spilltree adopts
a combined strategy of a defeatist search and DFS. The defeatist
search may fail for non-overlapping nodes if a query and its nearest
neighbors belong to different branches. However, it is guaranteed to
be successful for the overlapping nodes when the shortest distance
in the overlapping regions is larger than or equal to the distance be-
tween the query and its nearest neighbor. By setting an appropriate
tolerance parameter τ, the accuracies of both overlapping and non-
overlapping nodes are ensured [12]. Overall, the time complexity
of search for Spilltree is O(log n) [12].

The random projection to d-dimensional space has the time com-
plexity of O(nd ·CV ). Building a Spilltree costs O(nd log n). To use
Spilltree to search the k nearest neighbors, we also keep a min-
heap to maintain k data points when traversing the Spilltree. This
step will cost O(nd log n log k) time for all the data. In summary,
using Spilltree to build BRT costs O(nd ·CV +nd log n log k). Com-
pared to the kNN-BRT algorithm, using Spilltree will cost addi-
tional O(Vd + nd) memory to store the random projection matrix
and the Spilltree.

Table 1: Comparison of computational complexity and mem-
ory requirements of different algorithms. (CV is the number of
non-zero elements in the vector x and L =

∑
j x( j))

Algorithm Time complexity Memory requirement
BRT O(n2 ·CV + n2 log n) O(n2)

kNN-BRT O(n2 ·CV + n2 log k) O(nk)
Spilltree-BRT O(nd ·CV + nd log n log k) O(nk + Vd + nd)
PPJoin-BRT O(n2[(1 − ε2)L + log L]) O(n f (ε) + nL)

3.3.2 εNN-Approximation
In εNN-approximation, for each data point, we keep its nearest

neighbors whose similarity with the data point is larger than a pre-
defined threshold ε. This reduces the time complexity to O(n2 ·CV ).
The storage of εNN depends on the number of the neighbors that
satisfy the ε threshold. However, we might need to re-run the εNN
algorithm in order to ensure we can find candidates to be merged,
since when the threshold ε is too large, εNN will not return any
nearest neighbors.

PPJoin-BRT: To support εNN-approximation, we need to find
ε neighbors of a data point efficiently. We adopt the PPJoin+ [25]
approach for this purpose. PPJoin+ uses two types of filtering,
prefix filtering and suffix filtering, to filter out the data points that
do not satisfy certain constraints. In prefix filtering, it has been
proven that the cosine similarity is larger than a threshold ε if and
only if the number of overlapped terms between the two sets is
larger than ε′ = dε

√
Li · L je, where Li =

∑
k x(k)

i is the length of
the document xi. Therefore, we can quickly filter out pairs of doc-
uments as if their overlap is larger than ε′. The time complexity
of this step is reduced to (1 − ε2)

∑
j x( j), ε < 1 [25]. In suffix fil-

tering, it first derives an upper bound of hamming distance Hmax

corresponding to the pre-defined threshold ε. Then we filter out the
data if the lower bound of the hamming distance between two doc-
uments Hmin(xi, x j) is larger than the upper bound Hmax. We also
implemented an algorithm based on the binary search for the lower
bound of the hamming distance. The overall time complexity of
PPJoin+ is O(n2[(1 − ε2)L + log L]), where L is the average length
of documents. PPJoin-BRT takes O(n f (ε)) memory to store the
likelihood values of the nearest neighbors. Moreover, it needs an
inverted index to facilitate prefix filtering, and the memory cost is
O(nL).

A comparison of all the algorithms is shown in Table 1. We can
see that Spilltree-BRT has the least time complexity; however, it
requires more memory.

4. EXPERIMENTS
To demonstrate the effectiveness and scalability of the proposed

taxonomy building algorithms, we test the original BRT and the
nearest-neighbor-based methods on three different data sets. The
nearest-neighbor-based methods include kNN-BRT, Spilltree-BRT,
and PPJoin-BRT. In this section, we introduce the evaluation re-
sults in detail.

4.1 Performance of Clustering
In this experiment, we use the 20-newsgroups data to evaluate

the correctness of the algorithms. This data set forms a hierarchy
with two levels. The first level has six clusters, and the second level
contains 20 clusters. We randomly sample 2,000 documents to
compare the clusters generated by different hierarchical clustering
algorithms. We set all the parameters to be the same for Bayesian
rose trees. In addition, k in kNN-BRT and Spilltree-BRT is set to
10. The dimension of random projection used in Spilltree-BRT is
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Figure 4: Time cost comparison of different algorithms.
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Figure 5: Comparison of the impact of different parameters and settings for kNN based methods (10,000 data samples).

set to 10. The overlapping parameter τ used in Spilltree [12] is set
to 0.001.

We first compare the likelihood of different algorithms. As shown
in Table 2, the nearest-neighbor-based methods are comparable with
the original BRT. Particularly, the likelihood of kNN-BRT is better
than the original BRT. The reason is that searching the candidate
pairs from the nearest neighbors can significantly reduce the noise
of the data. Thereby it leads to a better local optima. This phe-
nomenon has also been observed in [4].

Then we leverage the NMI metric to compare the clusters of dif-
ferent levels in the generated trees with the human annotated ones
(Table 3). All the results are based on ten trials of different exe-
cutions. It can be seen that all the nearest-neighbor-based methods
have similar performance with the original BRT. The kNN-BRT al-
gorithm performs best with levels one and two, while the original
BRT performs best with the third level. This observation is consis-
tent with the likelihood results.

4.2 Scalability of Taxonomy Building
In this section, we investigate the scalability of the algorithms

based on two data sets. The first one is a query data set consist-

Table 2: Comparison of likelihood for 20-newsgroups data.
Methods Likelihood

BRT −1.441 × 106 ± 1.637 × 105

kNN-BRT −1.392 × 106 ± 1.053 × 105

Spilltree-BRT −1.473 × 106 ± 1.837 × 105

PPJoin-BRT −1.484 × 106 ± 1.348 × 105

ing of 114,076 queries, where the concept and context information
are extracted using the methods introduced in Section 3.1. The
vocabulary size is 912,792 and the average number of words in the
documents is 935. We also evaluate the algorithms on a larger news
data set. It contains one million news articles. The vocabulary size
is 252,174 and the average number of words is 242. All the experi-
ments are conducted on a 64-bit server with 2.5GHz CPU and 32G
of memory. The memory cost for the news data set is around 10G.

We first conduct the experiments to examine the “end-to-end”
time cost of different algorithms. We set k = 10 for kNN-BRT and
Spilltree-BRT. The dimension of random projection used in Spill-
tree-BRT is set 10. The overlapping parameter τ used in Spilltree is
set to 0.001. As shown in Figs. 4(a) and 4(d), the Spilltree-BRT al-



Table 3: Comparison of different algorithm with NMI scores.
Rose Tree Level Level 1 Level 2 Level 3

20-newsgroups cluster 6 Categories 20 Categories 6 Categories 20 Categories 6 Categories 20 Categories
BRT 0.055±0.006 0.075±0.008 0.202±0.010 0.295±0.016 0.313±0.012 0.476±0.019

kNN-BRT 0.123±0.019 0.144±0.020 0.237±0.020 0.324±0.021 0.311±0.014 0.454±0.020
Spilltree-BRT 0.076±0.004 0.101±0.007 0.189±0.007 0.273±0.114 0.279±0.007 0.423±0.011
PPJoin-BRT 0.088±0.010 0.113±0.012 0.190±0.033 0.269±0.062 0.258±0.038 0.389±0.065

gorithm is the fastest. kNN-BRT also performs faster than BRT and
PPJoin-BRT. PPJoin-BRT is not as fast as expected because the
process of finding the nearest neighbors must be re-run if there is
no candidate cluster pair to merge. Particularly, for the query data
set, PPJoin-BRT is even worse than the original BRT algorithm.
This is due to the fact that PPJoin is significantly affected by the
average length of documents. The average length of documents in
query data is about four times that of the news data. For the news
data set, PPJoin-BRT performs better than BRT.

To further analyze the performance of each algorithm in detail,
we divide the execution into two parts: preprocessing and build.
The detailed time costs for different algorithms are shown in Figs. 4(b),
4(c), 4(e), and 4(f). For BRT, during the preprocessing, we com-
pute the likelihood values between data samples and then sort them.
For the nearest neighbor based methods, the preprocessing mainly
focuses on finding the nearest neighbors and computing the likeli-
hood values. The building part of each algorithm gradually merges
clusters. For different algorithms, merging clusters differs from
searching for the candidate pair sets of different sizes. Moreover,
after a new cluster is generated, different number of likelihood val-
ues will be computed, as illustrated in Algorithms 1 and 2. It can
be concluded from the results that the time costs of kNN-BRT and
Spilltree-BRT in these two parts is consistently lower than BRT.
Specifically, the preprocessing of PPJoin-BRT is faster than kNN-
BRT. However, for build is much slower. This again demonstrates
our explanation that PPJoin-BRT will re-run the process of finding
the nearest neighbors.

Since Spilltree-BRT is the fastest algorithm, we also investigate
how different Spilltree parameters affect the time cost. The follow-
ing experiments are conducted with 10,000 data samples. The com-
parison results between the nearest-neighbor-based methods and
the original BRT are shown in Figs. 5(a) and 5(b). In the figures,
different curves represent the time costs of the Spilltree algorithms
with different overlapping tolerance parameters τ. This parame-
ter controls how many data points we allow to be overlapped by
different tree nodes in a Spilltree. As shown in the figures, the
larger overlapping parameter results in slower algorithm execution,
since it makes the algorithm backtrack more times back to the par-
ent nodes [12]. Moreover, in each curve, we also show how the
projected dimensions affect the time cost. Generally, fewer di-
mensions lead to faster algorithm execution. Spilltree-BRT can be
200–300 times faster than BRT when we project the data onto a
ten-dimensional space. Finally, we evaluate how the number of the
nearest neighbors affects the time cost. The results are shown in
Figs. 5(c) and 5(d). We present the time costs of both kNN-BRT
and Spilltree-BRT algorithms. It is shown that Spilltree-BRT per-
forms better when the number of the nearest neighbors is small.
This is also because it backtracks fewer times to the parent nodes
when fewer neighbors are needed.

4.3 Top KNN Search
To investigate the quality of the proposed taxonomy building

method, we also apply it to the top KNN search problem. This
problem is defined as: given a query in the form of short text, we
retrieve similar queries based on the concept and context features

Table 4: Comparison of the accuracy of top K search. (d is the
dimension of random projection, and k is the number of the
nearest neighbors.)

Algorithm Top 5 Top 10
Spilltree (d = 10) 0.290±0.364 0.321±0.350
Spilltree (d = 50) 0.632±0.317 0.640±0.295
Spilltree (d = 100) 0.754±0.298 0.731±0.280
Spilltree (d = 500) 0.904±0.149 0.880±0.172

BRT 0.922±0.193 0.921±0.187
kNN-BRT (k = 1) 0.929±0.197 0.929±0.209
kNN-BRT (k = 5) 0.923±0.206 0.936±0.159
kNN-BRT (k = 20) 0.928±0.160 0.961±0.124

PPJoin-BRT 0.868±0.247 0.852±0.271
Spilltree-BRT (d = 10, k = 1) 0.512±0.468 0.496±0.463
Spilltree-BRT (d = 50, k = 1) 0.818±0.335 0.796±0.338
Spilltree-BRT (d = 100, k = 1) 0.852±0.300 0.843±0.297
Spilltree-BRT (d = 500, k = 1) 0.907±0.217 0.909±0.204
Spilltree-BRT (d = 10, k = 5) 0.600±0.451 0.587±0.437
Spilltree-BRT (d = 50, k = 5) 0.815±0.339 0.799±0.344
Spilltree-BRT (d = 100, k = 5) 0.844±0.292 0.824±0.299
Spilltree-BRT (d = 500, k = 5) 0.856±0.289 0.852±0.287
Spilltree-BRT (d = 10, k = 20) 0.777±0.365 0.777±0.340
Spilltree-BRT (d = 50, k = 20) 0.885±0.257 0.909±0.221
Spilltree-BRT (d = 100, k = 20) 0.891±0.242 0.902±0.227
Spilltree-BRT (d = 500, k = 20) 0.901±0.221 0.911±0.208

from an already built tree. We use K here to distinguish the no-
tation of k used for kNN-based construction of taxonomy. In this
experiment, we investigate whether Spilltree, kNN-BRT, and Spill-
tree-BRT can bring benefits to this problem.

We first select 1,000 queries to build the taxonomy trees by lever-
aging the Spilltree algorithm and different algorithms of BRTs. The
experiments of Spilltree are conducted by doing a grid search for
tolerance parameter τ = {0.2, 0.3, 0.4}. The experiments of all
BRT-related algorithms are conducted by doing a grid search for
parameters α = {5, 10, 15} (Eq. (7)) and γ = {0.1, 0.5, 0.9} (Eq. (3)).
We choose the best results to be shown in this experiment. Then
we randomly select 100 queries to search the KNN of each query.
The ground truth is generated based on the cosine similarity. We
evaluate the precision of the top K search problems for different al-
gorithms, which is the proportion of the overlapped top K keywords
retrieved by the generated trees and the brute-force search using the
cosine similarity metric. The results are shown in Table 4. From the
analysis of the results, we draw the following conclusions: First,
the dimension of random projection significantly affects the accu-
racy of Spilltree. In general, the more random projection features
we use, the better the accuracy is. The search accuracy can be im-
proved from 30% to more than 90%. Second, the number of the
nearest neighbors used to accelerate the building procedure does
not affect the accuracy very much. For kNN-BRT, the accuracy
does not show a significant change when changing the number of k.
Third, Spilltree-BRT can further improve the accuracy of Spilltree.
With the same projection dimensionality d, Spilltree-BRT results
are significantly better than Spilltree. Increasing d or k can both
improve the accuracy. This is because larger d results in a better
searching accuracy of the nearest neighbors, while larger k leads



Table 5: Comparison of the time (in 10−6 seconds) of top K
search. (d is the dimension of random projection.)

Algorithm Top 5 Top 10
Spilltree (d = 10) 2.29±5.53 1.86±5.06
Spilltree (d = 50) 657.02±158.82 693.02±115.78
Spilltree (d = 100) 1,103.84±253.28 1,159.44±147.72
Spilltree (d = 500) 3,867.02±777.99 4,443.81±633.41

Spilltree-BRT (d = 10, k = 1) 34.38±109.55 35.94± 110.17
Spilltree-BRT (d = 10, k = 5) 48.44±84.71 40.63±78.50
Spilltree-BRT (d = 10, k = 20) 148.44±977.40 371.88±1,407.09
Spilltree-BRT (d = 50, k = 1) 143.75± 978.46 251.56± 1,464.60
Spilltree-BRT (d = 50, k = 5) 34.38± 64.73 43.75± 73.55
Spilltree-BRT (d = 50, k = 20) 50.00± 85.24 50.00± 98.53
Spilltree-BRT (d = 100,k = 1) 1,724.99±6,136.47 2,195.30 ± 6,855.77
Spilltree-BRT(d = 100,k = 5) 1,782.82±8,498.16 1,814.07 ± 8,687.89
Spilltree-BRT(d = 100,k = 20) 1,496.89±4,237.15 1,482.82 ± 4,233.09
Spilltree-BRT(d = 500,k = 1) 2,425.03 ± 5,085.73 2,621.91 ± 5,237.34
Spilltree-BRT(d = 500,k = 5) 2,135.97±5,025.30 2,223.47± 5,030.34
Spilltree-BRT(d = 500,k = 20) 2,121.89±4,420.28 2,112.51 ± 4,458.08

to more candidate cluster pairs which increase the opportunity for
finding the right clusters to merge.

We also test the searching time for Spilltree and Spilltree-BRT.
110K data is used to build the trees and 200 queries are randomly
selected to test the retrieving time. As shown in Table 5, Spilltree
performs faster with lower dimension of random projection. How-
ever, the accuracy is not good enough (see Table 4). With higher
dimensions, the time cost of Spilltree increases very quickly. The
major reasons are: (1) It cost more time to compare the similarity
between two points for higher dimensionality; (2) Given the same
parameter configuration, Spilltree will search more points in high
dimensional space. We also perform a grid search for Spilltree-
BRT. It can be seen that all results are achieved in acceptable time.
The search time of Spilltree-BRT depends on the structure of the
tree. Thus, changing d and k only affects the building time of Spill-
tree-BRT and does not monotonically affect the searching time.

5. CONCLUSION AND FUTURE WORK
In this paper, we present an approach that can automatically de-

rive a domain-dependent taxonomy from a set of keyword phrases
by leveraging both a general knowledgebase and keyword search.
We first deduce concepts with the technique of conceptualization
and extract context information from a search engine, and then in-
duce the new taxonomy using a Bayesian rose tree. We provide
three nearest-neighborhood-based methods to speed up the original
Bayesian rose tree algorithm. Particularly, the Spilltree-based al-
gorithm reduces the time and memory cost significantly. We also
conducted a set of experiments to demonstrate the effectiveness and
efficiency of the proposed algorithms.

We regard the work presented as initial, as there are improve-
ments to be made as well as many directions to pursue. First, we
will investigate how to use a set of random projections to expo-
nentially reduce the errors of k nearest neighbor searches in the
Spilltree algorithm. Second, we would like to use other locality
sensitive hashing methods or latent semantic sensitive dimension-
ality reduction methods to improve the search accuracy in Spilltree.
Third, we would like to apply our taxonomy building method to
real-world applications (e.g., advertisement or personalized search)
to demonstrate its effectiveness and usefulness.
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